GLOBAL ALLIANCE POWERFUELS

Global Energy Modelling Studies and the Role of Powerfuels in Net-Zero Emissions scenarios Panel Discussion

Powered by dena

AGENDA

Introduction: Powerfuels in net-zero emissions (NZE) 2050 scenarios

7	

Session 1: Assumptions and results of NZE scenarios

- 3
- Session 2: Implications for global policymaking and transition pathways

Q&A and discussion

Andreas Kuhlmann CEO, German Energy Agency (dena)

Kilian Crone Team Lead, Global Alliance Powerfuels

Matteo Micheli Expert, Global Alliance Powerfuels

Friederike Altgelt Expert, Global Alliance Powerfuels

Global Alliance Powerfuels – What we do

Advocacy & Communication

Raise awareness and acceptance of powerfuels as missing link to reaching global climate targets

Policy & Regulation

Support the enhancement of regulatory frameworks with a focus on Europe as demand region

Global Project Development

Stimulate project development to globally enable production capacities

Our global network

What are powerfuels?

 Includes: Fischer-Tropsch synthesis, hydrocracking, isomerization and distillation. Includes: DME/OME synthesis, olefin synthesis, OMEthanol-to-olefins process.
oligomerisation and hydrotrating.

Introduction Powerfuels in net-zero emissions 2050 scenarios

Andreas Kuhlmann

CEO, German Energy Agency (dena)

Prof. Christian Breyer

Professor of Solar Economy, LUT University

Most critical assumptions for the validity of NZE scenarios according to the current state of research

- Setting: Carbon-neutral global energy system in 2050
- Energy demand develops following IEA's World Energy Outlook 2020 (Stated Policies Scenario)
- **Electrification of all sectors**, as far as **technically possible** and **cost-effective**
 - 45% of final energy demand = renewable electricity
 - 90% of primary energy = renewable electricity
- All main powerfuels contribute to meeting the demand (all renewable electricity (RE)-based):
 - o **RE-SNG**
 - **RE-FT-Fuels**

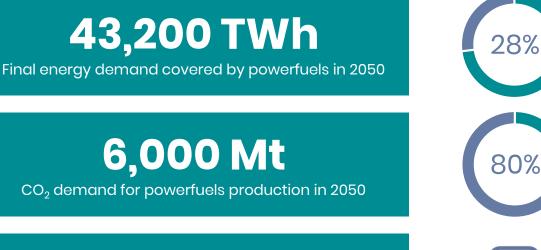
- RE-Ammonia
- **RE-Methanol**

• **RE-Hydrogen**

Most critical assumptions for the validity of NZE scenarios according to the current state of research

- Some industrial processes and specific energy uses can only become carbon-neutral by the use of powerfuels
- Powerfuels contribute to meeting the demand both as energy carriers and feedstocks (e.g., the chemical sector!)
- The use of **biofuels** other than waste, residues and by-products is **limited at** 2020 levels due to sustainability constraints
- Technology cost reductions:

CAPEX of main cost drivers				
Cost drivers	Unit	2020	2050	
PV	[€/kW]	432 - 475	166 - 183	
Wind onshore	[€/kW]	1150	900	
DAC	[€/tCO2a]	730	195	
Electrolyser	[€/kW]	550	< 200	

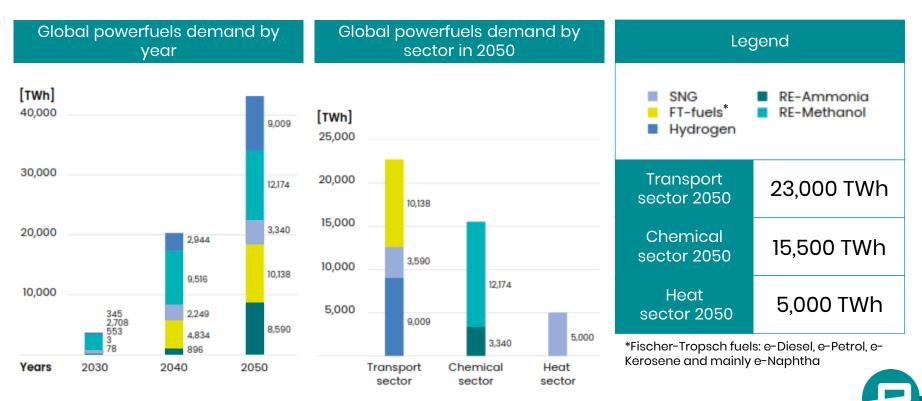


Powerfuels and DAC play an important role in a carbon neutral global energy system

of global final energy consumption 2050

of which is supplied by DAC, 20% from point sources

18,000 b€


Investments required until 2050

Close to the cost of sustaining oil and natural gas demand at current levels in same timeframe. upstream capital expenditures = approx. 17,500 b€

All types of powerfuels play a dominant role 2030 to 2050 With different shares in different sectors

Dr. Dolf Gielen, Director Innovation and Technology, IRENA

Dr. Falko Ueckerdt,

Head, National Energy Transitions Team, PIK

Dr. Onur Özgün, Lead Modeller of Energy Transition Outlook, DNV

Prof. Christian Breyer, Professor of Solar Economy, LUT University

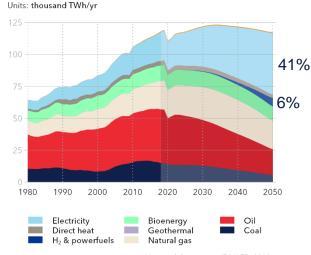
Topics of Discussion

Modeling of Powerfuels Critical assumptions

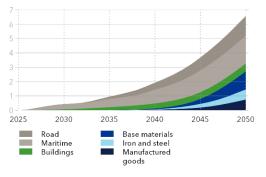
Dolf Gielen Director, Innovation and Technology

Global Alliance Powerfuels 23 March 2021

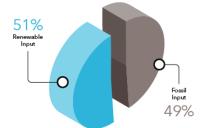
- World Energy Transitions Outlook (released 16 March)
 - 1.5 C scenario net zero 2050
 - 613 Mt hydrogen in 2050 (74 EJ) a 5-fold increase 2/3 green 1/3 blue
 - Ammonia for shipping, mainly biofuels for aviation, electrification road transport, methanol as building block for chemicals
 - 21 000 TWh electricity is used for production of hydrogen
- **Reaching Zero with Renewables** (released September 2020, in cooperation with International Methanol Institute)
 - Outlook for hard to decarbonise industry & transport sectors incl synfuels and synthetic feedstock Innovation Outlook Renewable Methanol, five-fold demand growth
- Innovation outlook Green Ammonia (ongoing, with Ammonia Energy Association)
 - Three-fold demand growth
- Biojet technology brief (ongoing)
- Electrification trucks event (October 2020)
- Greening petrochemicals (background analysis ongoing)


- Transition is driven by 1.5C/net zero objectives
- **Demand growth** IEA SPS is not a good reference for a 1.5C scenario, too high
- Assumptions for competing options are key (direct electrification, biofuels)
- No hydrogen for heating ?
- Carbon source for methanol in a fossil fuel free world ?

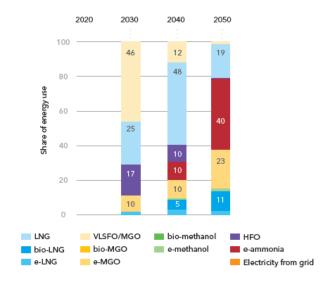
How does DNV's Energy Transition Outlook see powerfuels?


- · Not a carbon-neutral scenario
- Most likely future: ~2.3°C warming
- Total energy demand < IEA SDS

World final energy demand by carrier

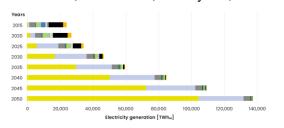


World hydrogen & powerfuels demand as energy carrier


Units: thousand TWh

Maritime fuel mix consistent with IMO targets

MF, mono fuel; DF, dual fuel; ICE, internal combustion engine; FC, fuel cell; EM, electric motor; HFO, heavy fuel oil; VLSFO, very low sulfur fuel oil; MGO, marine gas oil; LNG, liquefied natural gas; LPG, liquefied petroleum gas



Historical data source: IEA WEB (2019)

On discussion points

Cost Assumptions:

- Wind, electrolyser costs: reasonable
- 2020 PV cost: €432-475 seems too low (cheapest countries €600, average: ~€850)
- PV cost reduction: 2/3 reduction with 60x growth (11% learning rate) reasonable
- 2020 PV electricity supply = 2 x actual
- 2050 power mix: 76% solar, 20% wind, 3% hydro, 1% others

• Electrification rate:

- 38% electricity in transport: low for a net-zero?
- Share of EV in fleet?
- How electrolysis is competitive against SMR with electricity coming from mostly solar?
- What happens to electricity price?
 - How electricity stays competitive?
 - · How solar PV recovers costs?

- Scaling-up:
- Required investments: 18 trn € only includes powerfuel capex
- What would be the total cost of the carbon-neutral energy system?
- Are there any balancing feedback loops that will prevent mutual relationship between solar PV and powerfuels?

Potsdam Institute for Climate Impact Research

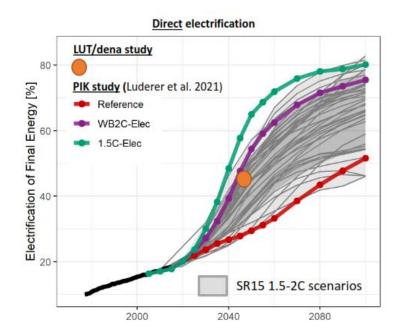
Leibniz Association

Dena/LUT - Powerfuels in NZE scenarios

Dr. Falko Ueckerdt

Head, National Energy Transitions Team Potsdam Institute for Climate Impact Research Based on:

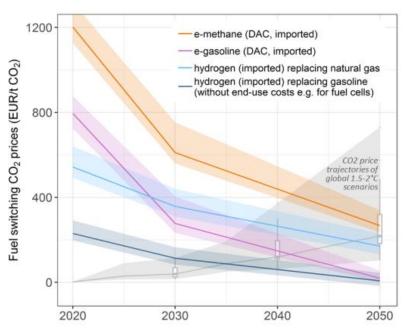
"Potential and risks of hydrogen-based e-fuels in climate change mitigation", Falko Ueckerdt, Christian Bauer, Alois Dirnaichner, Jordan Everall, Romain Sacchi, Gunnar Luderer (Nature Climate Change, accepted)


and

Luderer et al. 2021 (Nature Energy, in review) "Accelerated electrification based on cheap renewables facilitates reaching Paris Climate targets"

LUT/dena and PIK explore "empty corners" in the IPCC-SR15 2018 scenario database

IAM-scenarios with i) very-high renewables + ii) high electrification + iii) little/no CDR (BECCS) have been rare until recently


Luderer et al. 2021 (Nature Energy, in review)

Accelerated electrification based on cheap renewables facilitates reaching Paris Climate targets

Unprecedented e-fuel scaling requires massive and continous policy support.

PIK cost estimates are similar to dena/LUT study. Cost reductions rely on massive scaling. Competitiveness with fossil fuels ~2030/40. Massive policy support would be required until then.

Ueckerdt et al. 2021 (Nature Climate Change, accepted) Potential and risks of hydrogen-based e-fuels in climate change mitigation

ueckerdt@pik-potsdam.de

Topics of Discussion

Session 2 Implications for global policymaking and transition pathways

Dr. Dolf Gielen,

Director Innovation and Technology, IRENA

Dr. Falko Ueckerdt,

Head, National Energy Transitions Team, PIK

Anders Nordstrøm, Vice President, Head of Hydrogen, Ørsted

Sverre Alvik, Director of Energy Transition Research Programme, DNV

Karen Perrey Energy Strategy and Policies, Covestro

Marcel Keiffenheim,

Head of Policy & Communications, Greenpeace Energy

powerfuels@dena.de www.powerfuels.org

Thank you for your attention

STRATEGY & PROJECT TEAM – Contact us

Strategic Guidance

Project Team

Andreas Kuhlann Chief Executive, Speaker of the Alliance

Christoph Jugel Director, Energy Systems

Stefan Siegemund Director, Sustainable Mobility & Altern. Energy Sources

Kilian Crone Team Lead +49 (0)30 66 777 - 732 crone@dena.de

Christoph Menzel Expert +49 (0)30 66 777 - 129 menzel@dena.de

Matteo Micheli Expert +49 (0)30 66 777 - 353 micheli@dena.de

Johanna Friese Expert +49 (0)30 66 777 - 108 friese@dena.de

Hannes Salomon Expert +49 (0)30 66 777 - 140 salomon@dena.de

Friederike Altgelt Expert +49 (0)30 66 777 - 160 altgelt@dena.de