

Powerfuel Hubs foster international powerfuel value chains

Global perspectives and reflections

5 Theses for Powerfuel hubs

1st – Global Perspective: Powerfuel hubs will be the cornerstones of a global (renewable) energy system

2nd - Tradeflows: Global trade results in significant cost savings compared to a self-supply scenario

3rd - Location: Trade flows between import & export regions will determine large scale powerfuel hubs

Global traded volume = 9577 TWh_{th}

4th – Diverse Functionalities: Powerfuel hubs embody small scale powerfuel value chains

Upstream: Hubs as Prosumers

Midstream: Storage & Transfer

Downstream: All demand sectors

- High demand & volumes are a strong pull for production facilities
- Production: Electrolysis& DAC
- Conversion: Synthesis of derived fuels

- Storage of RE in the form of powerfuels
- Switch from transport to distribution

- Fuel demand (Transport)
- Feedstock demand (Industry)
- Electricity demand
- Heating & Cooling demand

5th - Tradability: Successful powerfuel hubs will set new standards

Prerequisites for tradability:

- Globally applicable sustainability criteria for:
 - Electricity Renewability, Additionality, etc.
 - CO2 DAC vs. Point sources
 - Water (work in progress)
- Powerfuel infrastructure

