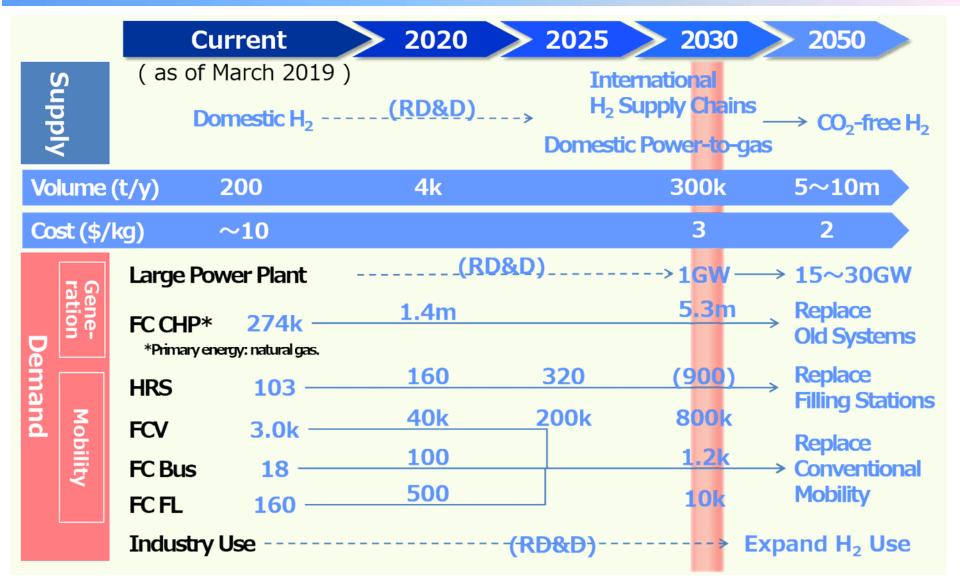


Japan's activity on hydrogen energy


10 September, 2019

Eiji Ohira

New Energy and Industrial Technology Development Organization (NEDO)

Policy: "Basic Hydrogen Strategy"

Source: Ministry of Economy, Trade and Industry

1

Strategic Roadmap for Hydrogen & Fuel Cells

		Goals in the Basic Hydrogen Strategy			Set of targets to achieve		Approach to achieving target
Use	S. 3.	FCV 200k b y2025 800k by 2030	2025	•	Price difference between FCV and HV ($\pm 3m \rightarrow \pm 0.7m$) Cost of main FCV system FC $\pm 20k/kW \rightarrow \pm 5k/kW$ Hydrogen Storage $\pm 0.7m \rightarrow \pm 0.3m$	٠	Regulatory reform and developing technology
	Mobility	HRS 320 by 2025 900 by 2030	2025	•	Construction and operating costs (Construction cost ¥350m → ¥200m) Operating cost ¥34m → ¥15m)		Consideration for creating nation wide network of HRS Extending hours of operation
		Bus 1,200 by 2030	Early 2020s *In addit hydrogen	tion, p	Costs of components for Compressor ¥90m → ¥50m Accumulator¥50m → ¥10m Vehicle cost of FC bus (¥105m → ¥52.5m) Percentage of the field of FC trucks, ships and trains.	(.)	Increasing HRS for FC bus
	Power	Commercialize by 2030	2020	•	Efficiency of hydrogen power generation (26%→27%) *1MW scale		Developing of high efficiency combustor etc.
	J.	Early realization of grid parity	2025	•	Realization of grid parity in commercial and industrial use		Developing FC cell/stack technology
Supply	Fossil +CCS	Hydrogen Cost ¥30/Nm3 by 2030 ¥20/Nm3 in future	Early 2020s	•	Production: Production cost from brown coal gasification		Scaling-up and improving efficiency of brown coal gasifier Scaling-up and improving thermal insulation properties
	Green H2	System cost of water electrolysis ¥50,000/kW in future	2030	•	Efficiency of water (5kWh/Nm3→4.3kWh/Nm3) telectrolysis	he d	gnated regions for public deployment onstration tests utilizing the outcomes of lemonstration test in Namie, Fukushima elopment of electrolyzer with higher ency and durability

Source: Ministry of Economy, Trade and Industry

®NEDO 2

Action Plan (mobility) on the RM

Target to achieve

200k by FY2025, 800k by FY2030

- Achieving a cost reduction of FCV to the level of HV around 2025 (Price difference ¥3m → ¥0.7m)
- Reducing cost of main elemental technologies around 2025 Fuel cell system around ¥20k/kW→¥5k/kW Hydrogen storage system around ¥0.7m → ¥0.3m

Expansion of vehicle types for volume zones in FY2025

Approach to achieving target

- Sharing technical information and problems in a cooperation area among stakeholders
- Developing technology for reducing the amount of platinum used.
- Developing technology for reducing of amount of carbon fiber in hydrogen storage systems

Making HRS independent by the second half of the 2020s Reduction of cost for construction and operation by FY2025 (construction cost ¥350m-¥200m, operation cost ¥34m/year->¥15m/year)

Setting of cost target for each component

320 by FY2025, some 900 by FY2030

Compressor ¥90m→¥50m High pressure vessels ¥50m→¥10m

- 1,200 FC buses by 2030
- Expansion of regions where FC buses run
- Reducing FC bus's price by half (¥105m->¥52.5m)
- Independent FC bus by FY2030

- Thoroughly integrate promotion of regulatory reform and technological development (Realization of selfservice HRS, use of inexpensive steel material etc.)
- Consideration for nation wide networking of HRS
- Extending opening hours
- Increasing of the number of HRS with gasoline station/convenience store

rogen Use

- Developing technology for enhancing the fuel efficiency and durability of such vehicles
- Expansion of types other than city buses
- Promotion of deployment of HRS for FC buses

©NEDO

10k FC forklifts by 2030

Expansion to an overseas markets

- Versatile deployment of fuel cell units
- Promotion of maintenance of simple and easy to operate filling equipment

*In addition, promote development of guidelines and technology development for expansion of hydrogen use in the field of FC trucks, ships and train.

Source: Ministry of Economy, Trade and Industry

Current status of Fuel Cell application

[©]NEDO

RD&D: Scaling-up

Related Activities: Maritime application

"Raicyo (Ptarmigan) N"

Tokyo University of Marine Science and Technology

Gross tonnage: 9.1 tons

The length of the ship: 12.60 meters Maximum speed at full load: 11 knots

Fuel cell: PEFC 7 kW (3.5 kW x 2)

Battery: Lithium ion 145 kWh (13.2 kWh x 11 pack)

Propulsion motor: 90 kW (45 kW x 2)

Source: Tokyo University of Marine Science and Technology

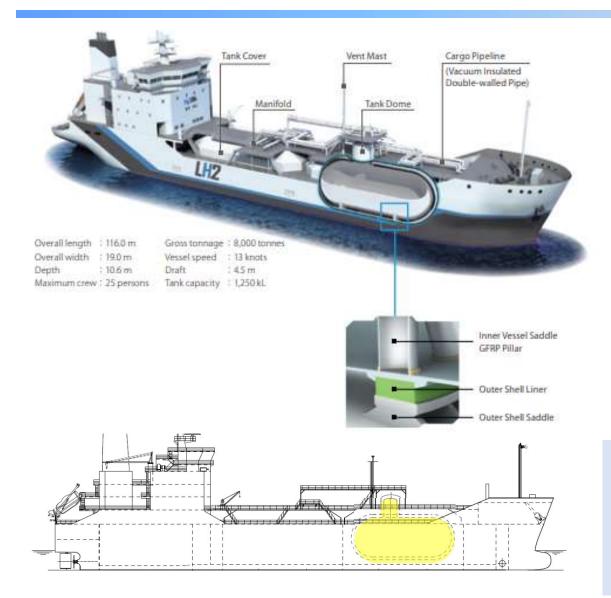
"PHEB-3" Osaka City University

Gross tonnage: 2.6 tons

The length of the ship: 9.6 meters

Rated speed: 8 knots

Battery: 24kWh (96V) 、2.4kWh (24V) 、


1.2kWh (12V)

Propulsion motor: 12 kW (6 kW x 2)

Source: Osaka City University

Related Activities: Transportation

Hydrogen Storage:

- 1,250m³ x 1 / 75t-H₂
- vacuum insulated double-walled structure
- Boil off rate: 0.1 vol %

Source: CO₂-free Hydrogen Energy Supply-chain Technology Research Association (HySTRA)

Related Activities: Transportation

Source: CO₂-free Hydrogen Energy Supply-chain Technology Research Association (HySTRA)

Related Activities: @port

Total operation hours: 699 hours

- with hydrogen: 444 hours

- Hydrogen only: 49 hours

- H2/NG: 395 hours

- NG only: 255 hours

H2 Consumption: 179,000 Nm3 (16t)

Total Power Generation: 822 MWh

Total Steam Distribution: 547 t Estimated CO₂ reduction: 109t

Source: KHI, Obayashi

Related Activities: @port

18

Concept of FC towing tractor

I	tem	Spec			
Output	Rated	8kW			
	Peak	32kW			
H ₂ Refuelii	ng	35MPa, 1kg (3min)			
Working t	ime	8hours			
Price: JPY 13,400,000- (US\$ 127K)					

Source: Toyota Industries Corporation

®NEDO 10

Thank you!